สถาปัตยกรรม ARDUINO

รศ.ณรงค์ บวบทอง

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์

คณะวิศวกรรมศาสตร์ มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต

หัวข้อ

- Arduino คืออะไร
- ใช้ทำอะไร
- ARDUINO ARCHITECTURE
- ARDUINO SHIELDS
- เริ่มต้นกับ ATMEGA168 ARDUINO
- Demonstration
- ถามปัญหา

-1

ARDUINO คืออะไร

- Arduino started in 2005 as a project for students at the Design Institute of Ivrea, Italy.
- Open source
- Physical computing platform
- "Hardware Abstracted" Wiring Language
- USB programmable
- Large community
- Inexpensive (\$31.95 from Sparkfun)
- "Arduino is an open-source physical computing platform based on a simple i/o board and a development environment that implements the Processing / Wiring language. Arduino can be used to develop standalone interactive objects or can be connected to software on your computer." (www.arduino.cc, 2006)

ARDUINO IS A PLATFORM (ฐาน)

• A physical Input / Output board (I/O) with a programmable Integrated Circuit (IC).

ARDUINO IS A PLATFORM

- Also including an Integrated Development Environment (IDE) for programming.
- The language itself is based in C but is largely modeled upon the www.processing.org

ใช้ทำอะไร

- Physical Computing projects / research
- Interactive Installations
- Rapid prototyping
- Sensors (to sense stuff)
 - Push buttons, touch pads, tilt switches.
 - -Variable resistors (eg. volume knob / sliders)
 - Photoresistors (sensing light levels)
 - -Thermistors (temperature)
 - Ultrasound (proximity range finder)
- Actuators (to do stuff)
 - Lights, LED's
 - -Motors
 - Speakers
 - Displays (LCD)

ตัวอย่าง โปรเจคที่ใช้ ARDUINO

ทำไมควรใช้ ARDUINO

- เป็น Open Source ทั้ง Hardware และ Software.
- สื่อสารกับคอมพิวเตอร์ได้โดยทางพอร์ทอนุกรมผ่าน USB (รุ่น Bluetooth เร็ว ๆนี้).
- สามารถใช้แหล่งจ่ายได้ทั้งทาง USB และ แหล่งจ่าย DC
- สามารถทำงานได้ด้วยตัวเอง และมีหน่วยความจำขาดเล็ก
- ทำงานได้กับสัญญาณอนาลอกและสัญาณดิจิตอล
- มีตัวอย่างและแหล่งข้อมูลมากมาย
- มีหลายรุ่น หลายราคา บางรุ่นราคาถูกมากๆ

ตัวอย่าง สถาปัตยกรรม ARDUINO

- Arduino board ประกอบด้วย
 ใมโครคอนโทรลเลอร์ขนาด 8 บิต ตระกูล
 AVR ของ Atmel
- มีอุปกรณ์สำหรับการ อัพโหลดโปรแกรม ลงชิพ
- มีมาตรฐานคอนเนคเตอร์เพื่อการต่อวงจร อื่นเพิ่มเติม วงจรอื่นๆที่ต่อเพิ่มนี้
 เรียกว่า shields.

ARDUINO SHIELDS

Shields are boards that can be plugged on top of the Arduino PCB extending its capabilities. The different shields follow the same philosophy as the original toolkit: they are easy to mount, and cheap to produce.

9

ATMEGA168-ARDUINO

- Digital I/O 14 ขา เรียกว่า D0 D13
- Analog I/P 6 ขา เรียกว่า A0 A5
- PWM 4 ช่อง
- Serial port 1 ช่อง

Atmega168 Pin Mapping

(PCINT14/RESET) PC6 PC5 (ADC5/SCL/PCINT13) digital pin 0 (RX) (PCINT16/RXD) PD0[PC4 (ADC4/SDA/PCINT12) (PCINT17/TXD) PD1 PC3 (ADC3/PCINT11) PC2 (ADC2/PCINT10) (PCINT18/INTO) PD2[digital pin 2 digital pin 3 (PWM) (PCINT19/OC2B/INT1) PD3[PC1 (ADC1/PCINT9) (PCINT20/XCK/T0) PD4 [PC0 (ADC0/PCINT8) analog input 0 TAREE crystal (PCINT6/XTAL1/TOSC1) PB6[(PCINT7/XTAL2/TOSC2) PB7 PB5 (SCK/PCINT5) 7 PB4 (MISO/PCINT4) digital pin 5 (PWM) (PCINT21/OC0B/T1) PD5 [PB2 (SS/OC1B/PCINT2) digital pin 10 (PWM) (PCINT23/AIN1) PD7F

Digital Pins 11,12 & 13 are used by the ICSP header for MISO, MOSI, SCK connections (Atmega168 pins 17,18 & 19). Avoid low impedance loads on these pins when using the ICSP header.

ET-EASY168 STAMP PIN

AVR	Arduino	Pin	ET-EASY168 STAMP	Pin	Arduino	AVR
PD0	Digital-0	1		28	+5V(+Vin)	+5V(+Vin)
PD1	Digital-1	2	AVRISP	27	+VCC(+5V)	+VCC(+5V)
PD2	Digital-2	3	Wikipi	26	RESET#	RESET(PC6)
PD3	Digital-3	4		25	Analog-0	PC0/ADC0
PD4	Digital-4	5		24	Analog-1	PC1/ADC1
PD5	Digital-5	6		23	Analog-2	PC2/ADC2
PD6	Digital-6	7		22	Analog-3	PC3/ADC3
PD7	Digital-7	8	2 U2 1/2	21	Analog-4	PC4/ADC4
PB0	Digital-8	9		20	Analog-5	PC5/ADC5
PB1	Digital-9	10		19	Analog-6	ADC6
PB2	Digital-10	11		18	Analog-7	ADC7
PB3	Digital-11	12		17	+VCC(+5V)	+VCC(+5V)
PB4	Digital-12	13		16	+AREF	+AREF
GND	GND	14		15	Digital-13	PB5

ติดตั้งโปรแกรม

- ติดตั้ง Driver ของ USB Bridge ของบอร์ด ET-EASY168 STAMP (ถ้า ยังไม่มี) http://www.ftdichip.com/FTDrivers.htm
- ติดตั้งโปรแกรม Arduino http:// arduino.cc/en/Main/Software
- RUN โปรแกรม Arduino

18

ตัวอย่างที่ 1 BLINK

Blink

Turns on an LED on for one second, then off for one second, repeatedly.

This example code is in the public domain.

```
void setup() {

// initialize the digital pin as an output.

// Pin 13 has an LED connected on most Arduino boards:
pinMode(13, OUTPUT);
}

void loop() {

digitalWrite(13, HIGH); // set the LED on
delay(1000); // wait for a second
digitalWrite(13, LOW); // set the LED off
delay(1000); // wait for a second
```


21

ว็บไซต์ที่เกี่ยวข้อง

- http://arduino.cc/en/
- https://sites.google.com/site/eplearn/arduino-project

ถ้าอยากทำเล่นขนาดจิ๋ว DUINO THUMB

- http://www.duinothumb.com/showcases/avr-usbarduino-
- duinothumb

ตัวอย่างที่ 2 ไฟวิ่ง

```
char flash;
void setup() {
    DDRD = B11111111; //Port D as output
}

void loop() {
    Flash = B00000001;
    for(int i = 0;i<8;i++){
        PORTD = flash;
        delay(300);
        flash<<=1;
    }
}</pre>
```

